
IInd Midterm session 2017-18             Subject: Operating System ( V CSE-B ) 

 

Q1. What is Deadlock? Explain essential conditions for deadlock to occur? 

In a multiprogramming environment, several processes may compete for a finite number of 

resources. A process requests resources; if the resources are not available at that time, the 

process enters a waiting state. Sometimes, a waiting process is never again able to change state, 

because the resources it has requested are held by other waiting processes. This situation is called 

a deadlock. 

 

A deadlock situation can arise if the following four conditions hold simultaneously in a system: 

 

Mutual exclusion: At least one resource must be held in a non-sharable mode; that is, only one 

process at a time can use the resource.  

Hold and wait: A process must be holding at least one resource and waiting to acquire 

additional resources that are currently being held by other processes. 

No preemption: Resources cannot be preempted; that is, a resource can be released only 

voluntarily by the process holding it, after that process has completed its task.  

Circular wait: A set { P0 , Pl, ... , P11 }of waiting processes must exist such that Po is waiting 

for a resource held by P1, P1 is waiting for a resource held by P2, ... , Pn-1 is waiting for a 

resource held by P,v and P11 is waiting for a resource held by Po. 

 

Q2. Explain Bankers algorithm for deadlock avoidance with an example? 
The banker‘s algorithm is a resource allocation and deadlock avoidance algorithm that tests for 

safety by simulating the allocation for predetermined maximum possible amounts of all 

resources, then makes an ―s-state‖ check to test for possible activities, before deciding whether 

allocation should be allowed to continue. 

Following Data structures are used to implement the Banker‘s Algorithm: 

Let ‘n’ be the number of processes in the system and ‘m’ be the number of resources types. 

Available :  
 It is a 1-d array of size ‘m’ indicating the number of available resources of each type. 

 Available[ j ] = k means there are ‘k’ instances of resource type Rj 

Max : 
 It is a 2-d array of size ‗n*m’ that defines the maximum demand of each process in a 

system. 

 Max[ i, j ] = k means process Pi may request at most ‘k’ instances of resource type Rj. 

Allocation : 
 It is a 2-d array of size ‘n*m’ that defines the number of resources of each type currently 

allocated to each process. 

 Allocation[ i, j ] = k means process Pi is currently allocated ‘k’ instances of resource 

type Rj 

Need : 
  It is a 2-d array of size ‘n*m’ that indicates the remaining resource need of each process. 



 Need [ i,  j ] = k means process Pi currently allocated ‘k’ instances of resource type Rj 

 Need [ i,  j ] = Max [ i,  j ] – Allocation [ i,  j ] 

Allocationi specifies the resources currently allocated to process Pi and Needi specifies the 

additional resources that process Pi may still request to complete its task. 

 

Banker‘s algorithm consist of Safety algorithm and Resource request algorithm 

Safety Algorithm 

 
Resource-Request Algorithm 
Let Requesti be the request array for process Pi. Requesti [j] = k means process Pi wants k 

instances of resource type Rj. When a request for resources is made by process Pi, the following 

actions are taken: 

https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/safety-algorithm.png


 
Example: 
Considering a system with five processes P0 through P4 and three resources types A, B, C. 

Resource type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at time 

t0 following snapshot of the system has been taken: 

 
 

Q3. Write short notes on page replacement algorithms? 
In a operating systems that use paging for memory management, page replacement algorithm are 

needed to decide which page needed to be replaced when new page comes in. Whenever a new 

page is referred and not present in memory, page fault occurs and Operating System replaces one 

of the existing pages with newly needed page. Different page replacement algorithms suggest 

different ways to decide which page to replace. The target for all algorithms is to reduce number 

of page faults. 

Page Fault – A page fault is a type of interrupt, raised by the hardware when a running program 

accesses a memory page that is mapped into the virtual address space, but not loaded in physical 

memory. 

 

Page Replacement Algorithms  

 

https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/resource-allocation-algorithm.png
https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/safety.png


1.First In First Out (FIFO): 

This is the simplest page replacement algorithm. In this algorithm, operating system keeps track 

of all pages in the memory in a queue, oldest page is in the front of the queue. When a page 

needs to be replaced page in the front of the queue is selected for removal. 

 

For example-1, consider page reference string 1, 3, 0, 3, 5, 6 and 3 page slots. 

Initially all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots —> 3 

Page Faults. when 3 comes, it is already in  memory so —> 0 Page Faults. Then 5 comes, it is 

not available in  memory so it replaces the oldest page slot i.e 1. —>1 Page Fault. Finally 6 

comes, it is also not available in memory so it replaces the oldest page slot i.e 3 —>1 Page Fault. 

 

Example-2, Let‘s have a reference string: a, b, c, d, c, a, d, b, e, b, a, b, c, d and the size of the 

frame be 4. There are 9 page faults using FIFO algorithm. 

 

Belady’s anomaly – Belady‘s anomaly proves that it is possible to have more page faults when 

increasing the number of page frames while using the First in First Out (FIFO) page replacement 

algorithm.  For example, if we consider reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4 and 3 slots, 

we get 9 total page faults, but if we increase slots to 4, we get 10 page faults. 

 

2.Optimal Page replacement : 

In this algorithm, pages are replaced which are not used for the longest duration of time in the 

future. Optimal page replacement is perfect, but not possible in practice as operating system 

cannot know future requests. The use of Optimal Page replacement is to set up a benchmark so 

that other replacement algorithms can be analyzed against it. 

3.Least Recently Used: 

In this algorithm page will be replaced which is least recently used. 

Let say the page reference string 7 0 1 2 0 3 0 4 2 3 0 3 2 . Initially we have 4 page slots empty. 

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page faults 

0 is already their so —> 0 Page fault. 

when 3 came it will take the place of 7 because it is least recently used —>1 Page fault 

0 is already in memory so —> 0 Page fault. 

4 will takes place of 1 —> 1 Page Fault 

Now for the further page reference string —> 0 Page fault because they are already available in 

the memory. 



Example-2, Let‘s have a reference string: a, b, c, d, c, a, d, b, e, b, a, b, c, d and the size of the 

frame be 4. 

 

Q4. Explain the following terms of memory management? 

a. Fragmentation 

As processes are loaded and removed from memory, the free memory space is broken into little 

pieces. External fragmentation exists when there is enough total memory space to satisfy a 

request but the available spaces are not contiguous; storage is fragmented into a large number of 

small holes. This fragmentation problem can be severe. In the worst case, we could have a block 

of free (or wasted) memory between every two processes. If all these small pieces of memory 

were in one big free block instead, we might be able to run several more processes. Whether we 

are using the first-fit or best-fit strategy can affect the amount of fragmentation. (First fit is better 

for some systems, whereas best fit is better for others.) Another factor is which end of a free 

block is allocated. (Which is the leftover piece-the one on the top or the one on the bottom?) No 

matter which algorithm is used, however, external fragmentation will be a problem. 

 

Depending on the total amount of memory storage and the average process size, external 

fragmentation may be a minor or a major problem. Statistical analysis of first fit, for instance, 

reveals that, even with some optimization, given N allocated blocks, another 0.5 N blocks will be 

lost to fragmentation. That is, one-third of memory may be unusable! This property is known as 

the 50-percent rule. 

 

Memory fragmentation can be internal as well as external. Consider a multiple-partition 

allocation scheme with a hole of 18,464 bytes. Suppose that the next process requests 18,462 

bytes. If we allocate exactly the requested block, we are left with a hole of 2 bytes. The overhead 

to keep track of this hole will be substantially larger than the hole itself. The general approach to 

avoiding this problem is to break the physical memory into fixed-sized blocks and allocate 

memory in units based on block size. With this approach, the memory allocated to a process may 

be slightly larger than the requested memory. The difference between these two numbers is 

internal fragmentation that is unsed memory that is internal to a partition. 

 

b. Paging 

Paging is a memory-management scheme that permits the physical address space of a process to 

be noncontiguous. Paging avoids external fragmentation and the need for compaction. It also 

solves the considerable problem of fitting memory chunks of varying sizes onto the backing 



store; most memory management schemes used before the introduction of paging suffered from 

this problem. The problem arises because, when some code fragments or data residing in main 

memory need to be swapped out, space must be found on the backing store. The backing store 

has the same fragmentation problems discussed in connection with main memory, but access is 

much slower, so compaction is impossible. Because of its advantages over earlier methods, 

paging in its various forms is used in most operating systems. Traditionally, support for paging 

has been handled by hardware. However, recent designs have implemented paging by closely 

integrating the hardware and operating system, especially on 64-bit microprocessors. 


