Engineering Mechanics Sample Paper

B. Tech II Semester

Example 1. A system of forces is acting at the corners of a rectangular block as shown in Fig. 2.4.

Fig. 1
Determine the magnitude and direction of the resultant force.
Solution. Given: System of forces
Magnitude of the resultant force
Resolving forces horizontally,
$\Sigma \mathrm{H}=25-20=5 \mathrm{kN}$
and now resolving the forces vertically
$\Sigma \mathrm{V}=(-50)+(-35)=-85 \mathrm{kN}$
\therefore Magnitude of the resultant force
$\mathrm{R}=\sqrt{(\Sigma \mathrm{H})^{2}+(\Sigma \mathrm{V})^{2}}=\sqrt{(5)^{2}+(-85)^{2}}=85.15 \mathrm{kN}$

Example 2. The following forces act at a point :
(i) 20 N inclined at 30° towards North of East,
(ii) 25 N towards North,
(iii) 30 N towards North West, and
(iv) 35 N inclined at 40° towards South of West.

Find the magnitude and direction of the resultant force.
Solution. The system of given forces is shown in Fig. 2.

Fig. 2
Magnitude of the resultant force
Resolving all the forces horizontally i.e., along East-West line,
$\Sigma \mathrm{H}=20 \cos 30^{\circ}+25 \cos 90^{\circ}+30 \cos 135^{\circ}+35 \cos 220^{\circ} \mathrm{N}$
$=(20 \times 0.866)+(25 \times 0)+30(-0.707)+35(-0.766) \mathrm{N}$
$=-30.7 \mathrm{~N} . . .(\mathrm{i})$
and now resolving all the forces vertically i.e., along North-South line,
$\Sigma \mathrm{V}=20 \sin 30^{\circ}+25 \sin 90^{\circ}+30 \sin 135^{\circ}+35 \sin 220^{\circ} \mathrm{N}$
$=(20 \times 0.5)+(25 \times 1.0)+(30 \times 0.707)+35(-0.6428) \mathrm{N}$
$=33.7 \mathrm{~N}$
We know that magnitude of the resultant force,

$$
\mathrm{R}=\sqrt{(\Sigma \mathrm{H})^{2}+(\Sigma \mathrm{V})^{2}}=\sqrt{(-30.7)^{2}+(33.7)^{2}}=45.6 \mathrm{~N} \text { Ans. }
$$

Direction of the resultant force
Let $\theta=$ Angle, which the resultant force makes with the East.
We know that

$$
\tan \theta=\frac{\Sigma \mathrm{V}}{\Sigma \mathrm{H}}=\frac{33.7}{-30.7}=-1.098 \text { or } 47.7^{\circ}
$$

Since $\Sigma \mathrm{H}$ is negative and $\Sigma \mathrm{V}$ is positive, therefore resultant lies between 90° and 180°. Thus actual angle of the resultant $=180^{\circ}-47.7^{\circ}=132.3^{\circ}$

Example 3. A horizontal line $P Q R S$ is 12 m long, where $P Q=Q R=R S=4 \mathrm{~m}$. Forces of
$1000 \mathrm{~N}, 1500 \mathrm{~N}, 1000 \mathrm{~N}$ and 500 N act at P, Q, R and S respectively with downward direction.
The lines of action of these forces make angles of $90^{\circ}, \mathbf{6 0}, \mathbf{4 5}^{\circ}$ and 30° respectively with PS.
Find the magnitude, direction and position of the resultant force.
Solution. The system of the given forces is shown in Fig. 3

Fig 3.
Magnitude of the resultant force

Resolving all the forces horizontally,
$\Sigma \mathrm{H}=1000 \cos 90^{\circ}+1500 \cos 60^{\circ}+1000 \cos 45^{\circ}+500 \cos 30^{\circ} \mathrm{N}$
$=(1000 \times 0)+(1500 \times 0.5)+(1000 \times 0.707)+(500 \times 0.866) \mathrm{N}$
$=1890 \mathrm{~N}$
and now resolving all the forces vertically,
$\Sigma \mathrm{V}=1000 \sin 90^{\circ}+1500 \sin 60^{\circ}+1000 \sin 45^{\circ}+500 \sin 30^{\circ} \mathrm{N}$
$=(1000 \times 1.0)+(1500 \times 0.866)+(1000 \times 0.707)+(500 \times 0.5) \mathrm{N}$
$=3256 \mathrm{~N}$

We know that magnitude of the resultant force,
$\mathrm{R}=(\Sigma \mathrm{H}) 2+(\Sigma \mathrm{V}) 2=(1890) 2+(3256) 2=3765 \mathrm{~N}$ Ans.
Direction of the resultant force

Let $\theta=$ Angle, which the resultant force makes with PS
$\tan \theta=\frac{\Sigma \mathrm{V}}{\Sigma \mathrm{H}}=\frac{3256}{1890}=1.722$ or 59.8°

Note. Since both the values of $\Sigma \mathrm{H}$ and $\Sigma \mathrm{V}$ are +ve . therefore resultant lies between 0° and 90°.

Position of the resultant force

Let $\mathrm{x}=$ Distance between P and the line of action of the resultant force.

Now taking moments of the vertical components of the forces and the resultant force about P , and equating the same,
$3256 \mathrm{x}=(1000 \times 0)+(1500 \times 0.866) 4+(1000 \times 0.707) 8+(500 \times 0.5) 12$
$=13852$
$\therefore \quad x=\frac{13852}{3256}=4.25 \mathrm{~m}$
Example 4. A machine component 1.5 m long and weight 1000 N is supported by two ropes AB and CD as shown in Fig. 4 given below.

Fig. 4
Calculate the tensions T_{1} and T_{2} in the ropes $A B$ and $C D$.
Solution. Given : Weight of the component $=1000 \mathrm{~N}$
Resolving the forces horizontally (i.e., along BC) and equating the same,
$\mathrm{T}_{1} \cos 60^{\circ}=\mathrm{T}_{2} \cos 45^{\circ}$

$$
\begin{equation*}
\mathrm{T}_{1}=\frac{\cos 45^{\circ}}{\cos 60^{\circ}} \times \mathrm{T}_{2} \tag{i}
\end{equation*}
$$

and now resolving the forces vertically,
$\mathrm{T}_{1} \sin 60^{\circ}+\mathrm{T}_{2} \sin 45^{\circ}=1000$
$\left(1.414 \mathrm{~T}_{2}\right) 0.866+\mathrm{T}_{2} \times 0.707=1000$
$1.93 \mathrm{~T}_{2}=1000$
$\therefore \quad \mathrm{T}_{2}=\frac{1000}{1.93}=518.1 \mathrm{~N}$
and $\mathrm{T}_{1}=1.414 \times 518.1=732.6 \mathrm{~N}$

Example 5. Three vectors A, B, and C are shown in the figure below. Find one vector (magnitude and direction) that will have the same effect as the three vectors shown in below.

Solution:
$R_{x}=100 \cos 37^{\circ}+100 \cos 150^{\circ}+80 \cos 233^{\circ}$
$R_{x}=-54.88 \mathrm{~N}$
$R_{x}=54.88 \mathrm{~N}$ to the left
$R_{y}=100 \sin 37^{\circ}+100 \sin 150^{\circ}+80 \sin 233^{\circ}$
$R_{y}=46.29 \mathrm{~N}$
$R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}$
$R=\sqrt{54.88^{2}+46.29^{2}}$

$R=71.79 \mathrm{~N}$
$\tan \theta_{x}=\frac{R_{y}}{R_{x}}$
$\tan \theta_{x}=\frac{46.29}{54.88}$
$\theta_{x}=40.15^{\circ}$
$\theta=180^{\circ}-\theta_{\text {x }}=180^{\circ}-40.15^{\circ}$
$\theta=139.85^{\circ}$
$R=71.79 \mathrm{~N}$ at 139.85°

Example 6. Determine the magnitude of Pand F necessary to keep the concurrent force system in Fig. 6 in equilibrium.

Fig. 6
Solution: Because system of force is in equilibrium so sum of horizontal $\left(\Sigma F_{H}\right)$ and vertical (ΣF_{V}) component of all forces will be zero.
$\Sigma F_{H}=0$
$F \cos 60^{\circ}+200 \cos 45^{\circ}=300+P \cos 30^{\circ}$
$F=317.16+1.7320 P$
$\Sigma F_{V}=0$
$F \sin 60^{\circ}=200 \sin 45^{\circ}+P \sin 30^{\circ}$
$(317.16+1.7320 P) \sin 60^{\circ}=200 \sin 45^{\circ}+P \sin 30^{\circ}$
$274.67+1.5 P=141.42+0.5 P$
$P=-133.25 \mathrm{~N}$
$F=317.16+1.7320(-133.25)$
$F=86.37$ N

