

Ques1. What is embedded system? Give Characteristics and Applications of

Embedded systems

Ans. An embedded device is a machine that has software program embedded in PC hardware. It

makes a device devoted to a selected a part of an application or fabricated from a bigger device.

Depending on the application, embedded device can be programmable or non-programmable.

CHARACTERISTICS OF EMBEDDED SYSTEM

 Embedded systems are designed for a specific challenge. Even though they use laptop

strategies, they cannot be used as a widespread reason computer the use of a spread of

different programs for one of a kind project. On this manner, their function can be focused on

what they need to do, and they can consequently be made inexpensive and greater correctly.

 The software program for embedded systems is usually called firmware. In preference to

being saved on a disc, where many applications can be stored, the single programmed for an

embedded gadget is usually saved on the chip and its miles called firmware.

 Commonly, an embedded device executes a particular operation and does the similar always.

As an example: a pager is continuously functioning as a pager.

 All of the computing structures have boundaries on layout metrics, but the ones can be in

particular tight. Design calculation is a measure of executive functions like length, strength,

price and also performance.

 It should carry out rapid sufficient and eat much less strength to increase battery existence.

 It has to be based totally on a microcontroller or microprocessor primarily based.

 An embedded system is built in with hardware and software program where the hardware is

used for safety and performance and software is used for more flexibility and capabilities.

EMBEDDED SYSTEM APPLICATIONS

The programs of an embedded system fundamentals consist of smart cards, PC networking,

satellites, telecommunications, digital consumer electronics, missiles, etc.

 Embedded systems in cars include motor control, Cruise manipulates, frame safety, engine

safety, robotics in a meeting line, automobile multimedia, automobile enjoyment, e-com get

entry to, mobiles etc.

 Embedded structures in telecommunications consist of networking, mobile computing, and

wireless communications, and so on.

 Embedded structures in smart playing cards consist of banking, smartphone and protection

systems.

 Embedded systems in satellites and missiles include defense, conversation, and aerospace.

 Embedded structures in computer networking & peripherals consist of photo processing,

networking systems, printers, community cards, monitors, and shows.

 Embedded structures in virtual patron electronics include set-pinnacle boxes, dads, high

definition TVs and digital cameras.

Consequently, that is all approximately the fundamentals of embedded device fundamentals and

applications. We all recognize that embedded systems are gorgeous structures that play a crucial

position in lots of packages like gadget, industrial instrumentation, and so forth.

Ques2. Write and explain various components of Embedded systems

Ans. The embedded structures fundamentals include the components of embedded machine

hardware, embedded machine sorts and numerous characteristics. An embedded system has three

foremost components: embedded gadget hardware, embedded gadget software program and

operating gadget

EMBEDDED SYSTEMS HARDWARE

As with every electronic device, an embedded device calls for a hardware platform in which it

plays the operation. Embedded device hardware is built with a microprocessor or microcontroller.

The embedded device hardware has factors like entering output (I/O) interfaces, consumer

interface, reminiscence and the display. Usually, an embedded system consists of:

 Power supply

 Processor

 Timers

 Serial exchange ports

 Input/output circuits

 System service specific circuits

EMBEDDED SYSTEM SOFTWARE

The embedded device software is written to carry out a selected feature. It is commonly written in

a high degree format after which compiled right down to provide code that can be lodged inside a

non-risky reminiscence within the hardware. An embedded gadget software program is designed

to keep in view of the 3 limits:

 Availability of machine memory

 Availability of processor’s speed

 When the system runs continuously, there may be a want to limit power dissipation for events

like prevent, run and wake up.

REAL TIME OPERATING SYSTEM

A device is said to be actual time if it’s miles vital to complete its work and supply its service on

time. Actual time running system manages the software and provides a mechanism to let the

processor run. The actual time operating gadget is accountable for handling the hardware sources

of a computer and host programs which run on the PC.

MEMORY

In an embedded gadget, there are special kinds of memories. The extraordinary varieties of

processors utilized in an embedded system consisting of digital signal processor (DSP),

microprocessor, RISC processor, microcontroller, ASSP processor, ASIP processor.

PROCESSORS

Amazing processors utilized in embedded systems are microprocessor, (DSP) virtual sign

processor, microcontroller, RISC processor, ASIP processor, arm processor and ASSP processor.

Ques3. Explain various issues and challenges in Embedded system design

Ans. Challenges in Embedded System Design:

a) Optimizing the Design Metrics and

b) Formalism of System Metrics

 Amount and type of hardware needed

 Taking into account the design metrics

 Optimizing the Power Dissipation

 Disable use of certain structural units of the processor to reduce power dissipation

 Process Deadlines

 Flexibility and Upgradeability

 Reliability

 Testing, Verification and Validation

Ques4. What is the difference between RISC and CISC Architectures

Ans. The main difference between RISC and CISC is in the number of computing cycles each of

their instructions take. The difference the number of cycles is based on the complexity and the goal

of their instructions.

 RISC CISC

Acronym
It stands for ‘Reduced Instruction Set

Computer’.

It stands for ‘Complex Instruction Set

Computer’.

Definition
The RISC processors have a smaller set of

instructions with few addressing nodes.

The CISC processors have a larger set

of instructions with many addressing

nodes.

Memory unit
It has no memory unit and uses a separate

hardware to implement instructions.

It has a memory unit to implement

complex instructions.

Program It has a hard-wired unit of programming. It has a micro-programming unit.

Design It is a complex complier design. It is an easy complier design.

Calculations The calculations are faster and precise. The calculations are slow and precise.

Decoding Decoding of instructions is simple. Decoding of instructions is complex.

Time Execution time is very less. Execution time is very high.

External memory
It does not require external memory for

calculations.

It requires external memory for

calculations.

Pipelining Pipelining does function correctly.
Pipelining does not function

correctly.

Stalling Stalling is mostly reduced in processors. The processors often stall.

Code expansion Code expansion can be a problem. Code expansion is not a problem.

Disc space The space is saved. The space is wasted.

Applications

Used in high end applications such as

video processing, telecommunications

and image processing.

Used in low end applications such as

security systems, home automations,

etc.

Ques5. Write and Explain the Processor Architecture of ARM processor

Ans. ARM, previously Advanced RISC Machine, originally Acorn RISC Machine, is a family of reduced instruction

set computing (RISC) architectures for computer processors, configured for various environments.

ARM Holdings periodically releases updates to architectures and core designs.

Following are the units of architecture

Register Bank – 2 read ports, 1 write ports, access any register –1 additional read port, 1 additional write port for

r15 (PC)

Barrel Shifter –Shift or rotate the operand by any number of bits

Arithmetic and Logical Unit

Address register and incrementer

Data Registers –Hold data passing to and from memory

Instruction Decoder and Control

Ques6. Explain data operations and flow control within the instruction set of ARM

processor

Ans. ARM Instruction Set

Data processing instructions

Data transfer instructions

Control flow instructions

Writing simple assembly language programs

Data processing and operations:

 They are move, arithmetic, logical, comparison and multiply instructions.

 Most data processing instructions can process one of their operands using the barrel shifter.

 General rules: –

 All operands are 32-bit, coming from registers or literals.

 The result, if any, is 32-bit and placed in a register

 3-address format

Flow control instructions:

 Branch instruction

Conditional execution

Ques7. Write and Explain the Processor Architecture and Memory organization of

SHARC processor

Ans. Analog Devices 32-Bit Floating-Point SHARC Processors are based on a Super Harvard architecture

that balances exceptional core and memory performance with outstanding I/O throughput capabilities.

This "Super" Harvard architecture extends the original concepts of separate program and data memory

busses by adding an I/O processor with its associated dedicated busses. In addition to satisfying the

demands of the most computationally intensive, real-time signal-processing applications, SHARC

processors integrate large memory arrays and application-specific peripherals designed to simplify

product development and reduce time to market.

Common Architectural Features

32/40-Bit IEEE Floating-Point Math

32-Bit Fixed-Point Multipliers with 64-Bit Product & 80-Bit Accumulation

No Arithmetic Pipeline; All Computations Are Single-Cycle

Circular Buffer Addressing Supported in Hardware

32 Address Pointers Support 32 Circular Buffers

Six Nested Levels of Zero-Overhead Looping in Hardware

Rich, Algebraic Assembly Language Syntax

Instruction Set Supports Conditional Arithmetic, Bit Manipulation, Divide & Square Root, Bit Field Deposit

and Extract

DMA Allows Zero-Overhead Background Transfers at Full Clock Rate Without Processor Intervention

Ques8. Write short note on parallelism within instruction

Ans. Pipelining can overlap the execution of instructions when they are independent of one another. This

potential overlap among instructions is called instruction-level parallelism (ILP) since the instructions can

be evaluated in parallel.

The amount of parallelism available within a basic block (a straight-line code sequence with no branches
in and out except for entry and exit) is quite small. The average dynamic branch frequency in integer
programs was measured to be about 15%, meaning that about 7 instructions execute between a pair of
branches. Since the instructions are likely to depend upon one another, the amount of overlap we can
exploit within a basic block is likely to be much less than 7.

To obtain substantial performance enhancements, we must exploit ILP across multiple basic blocks. The
simplest and most common way to increase the amount of parallelism available among instructions is to
exploit parallelism among iterations of a loop. This type of parallelism is often called loop-level
parallelism.

Ques9. Describe DMA in embedded systems

Ans. Direct memory access (DMA) is a means of having a peripheral device control a processor's memory

bus directly. DMA permits the peripheral, such as a UART, to transfer data directly to or from memory

without having each byte (or word) handled by the processor. Thus DMA enables more efficient use of

interrupts, increases data throughput, and potentially reduces hardware costs by eliminating the need for

peripheral-specific FIFO buffers.

In a typical DMA transfer, some event (such as an incoming data-available signal from a UART) notifies a

separate device called the DMA controller that data needs to be transferred to memory. The DMA

controller then asserts a DMA request signal to the CPU, asking its permission to use the bus. The CPU

completes its current bus activity, stops driving the bus, and returns a DMA acknowledge signal to the

DMA controller. The DMA controller then reads and writes one or more memory bytes, driving the

address, data, and control signals as if it were itself the CPU. (The CPU's address, data, and control outputs

are tri-stated while the DMA controller has control of the bus.) When the transfer is complete, the DMA

controller stops driving the bus and de-asserts the DMA request signal. The CPU can then remove its DMA

acknowledge signal and resume control of the bus.

Each DMA cycle will typically result in at least two bus cycles: either a peripheral read followed by a

memory write or a memory read followed by a peripheral write, depending on the transfer base

addresses. The DMA controller itself does no processing on this data. It just transfers the bytes as

instructed in its configuration registers.

It's possible to do a flyby transfer that performs the read and write in a single bus cycle. However, though

supported on the ISA bus and its embedded cousin PC/104, flyby transfers are not typical.

Processors that support DMA provide one or more input signals that the bus requester can assert to gain

control of the bus and one or more output signals that the processor asserts to indicate it has relinquished

the bus. A typical output signal might be named HLDA (short for HOLD Acknowledge).

When designing with DMA, address buffers must be disabled during DMA so the bus requester can drive

them without bus contention. To avoid bus contention, the bus buffer used by the DMA device must not

drive the address bus until after HLDA goes active to indicate that the CPU has stopped driving the bus

signals, and it must stop driving the bus before the CPU drives HLDA inactive. The system design may also

need pull up resistors or terminators on control signals (such as read and write strobes) so the control

signals don't float to the active state during the brief period when neither the processor nor the DMA

controller is driving them.

DMA controllers require initialization by software. Typical setup parameters include the base address of

the source area, the base address of the destination area, the length of the block, and whether the DMA

controller should generate a processor interrupt once the block transfer is complete.

It's typically possible to have the DMA controller automatically increment one or both addresses after

each byte (word) transfer, so that the next transfer will be from the next memory location. Transfers

between peripherals and memory often require that the peripheral address not be incremented after

each transfer. When the address is not incremented, each data byte will be transferred to or from the

same memory location.

Ques10. Explain Timer and counters in ARM bus

Ans. Counter/timer hardware is a crucial component of most embedded systems. In some cases a timer

is needed to measure elapsed time; in others we want to count or time some external events. Here's a

primer on the hardware.

Counter/timer hardware is a crucial component of most embedded systems. In some cases, a timer

measures elapsed time (counting processor clock ticks). In others, we want to count or time external

events. The names counter and timer can be used interchangeably when talking about the hardware. The

difference in terminology has more to do with how the hardware is used in a given application.

A timer with automatic reload capability will have a latch register to hold the count written by the

processor. When the processor writes to the latch, the count register is written as well. When the timer

later overflows, it first generates an output signal. Then, it automatically reloads the contents of the latch

into the count register. Since the latch still holds the value written by the processor, the counter will begin

counting again from the same initial value.

Such a timer will produce a regular output with the same accuracy as the input clock. This output could

be used to generate a periodic interrupt like a real-time operating system (RTOS) timer tick, provide a

baud rate clock to a UART, or drive any device that requires a regular pulse.

A variation of this feature found in some timers uses the value written by the processor as the endpoint

rather than the initial count. In this case, the processor writes into a terminal count register that is

constantly compared with the value in the count register. The count register is always reset to zero and

counts up. When it equals the value in the terminal count register, the output signal is asserted. Then the

count register is reset to zero and the process repeats. The terminal count remains the same. The overall

effect is the same as an overflow counter. A periodic signal of a pre-determined length will then be

produced.

Ques11. Write and explain the software design patterns for embedded system

Ans. Embedded System Design Patterns

 Object Design Patterns
 State Design Patterns
 Hardware Interface Design Patterns
 Protocol Design Patterns
 Architecture Design Patterns
 Implementation Design Patterns

Object Design Patterns

 Half Call Design Pattern Half Call design pattern helps in simplifying systems which support interworking
of multiple protocols.
 Manager Design Pattern Real-time software generally manages multiple entities of the same type.
Manager Design Pattern is used to control these entities.
 Resource Manager Pattern Resource Manager keeps track of allocated and free resources.

https://www.eventhelix.com/RealtimeMantra/Patterns/#Object_Design_Patterns
https://www.eventhelix.com/RealtimeMantra/Patterns/#State_Design_Patterns
https://www.eventhelix.com/RealtimeMantra/Patterns/#Hardware_Interface_Design_Patterns
https://www.eventhelix.com/RealtimeMantra/Patterns/#Protocol_Design_Patterns
https://www.eventhelix.com/RealtimeMantra/Patterns/#Architecture_Design_Patterns
https://www.eventhelix.com/RealtimeMantra/Patterns/#Implementation_Design_Patterns
https://www.eventhelix.com/RealtimeMantra/HalfCallDesignPattern.htm
https://www.eventhelix.com/RealtimeMantra/HalfCallDesignPattern.htm
https://www.eventhelix.com/RealtimeMantra/ManagerDesignPattern.htm
https://www.eventhelix.com/RealtimeMantra/ManagerDesignPattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/resource_manager_pattern.htm

 Message Factory and Message Interface Design Pattern Message interfaces and the rest of the logic can
be decoupled using this design pattern
 Publish-Subscribe Design Patterns Decoupling of publisher and subscriber of information can be achieved
by applying these design patterns.

State Design Patterns

 Hierarchical State Machine Hierarchical State Machine design is introduced and compared with
conventional state design.
 State Machine Inheritance This article discusses several ways in which new state machines can be defined
by inheriting from existing state machines.
 Collector State Pattern This state pattern is used when the recipient has to collect similar messages before
it can initiate action.
 Parallel Wait State Pattern State Pattern to handle parallel operations in Real-time systems.
 Serial Wait State Pattern State Pattern to handle sequential operations in Real-time systems.

Hardware Interface Design Patterns

 Serial Port Design Pattern This design pattern is described in terms of a class that completely encapsulates
the interface with a serial port device.
 High Speed Serial Port Design Pattern We consider the design of a DMA based high speed serial interface.
The classes involved in this pattern interact with the device to setup buffers for DMA operations.
 Hardware Device Design Pattern Encapsulate the hardware device register access in a class.
 Synchronizer Design Pattern The Synchronizer Design Pattern is used to look at the raw incoming bit or
byte stream and detect and align to the frame structure. The frame structure is detected by searching for a sync
pattern in the frame.

Protocol Design Patterns

 Transmit Protocol Handler Design Pattern Sliding window transmit protocol design pattern is described
here.
 Receive Protocol Handler Design Pattern Sliding window receive protocol design pattern is described here.
 Protocol Packet Design Pattern Simplify buffer management in protocol stacks by supporting a single
buffer that allows addition and extraction of different protocol layers.
 Protocol Layer Design Pattern Provide a common framework for implementing different layers of a
protocol stack.
 Protocol Stack Design Pattern Manages different layers of a protocol stack. Allows dynamic addition and
removal of protocol layers.

Architecture Design Patterns

 Processor Architecture Patterns Typical processor patterns found in embedded and distributed systems
are covered here
 Processor Architecture Patterns II Comparison of processor architecture patterns.
 Feature Coordination Patterns This article covers different design patterns for feature coordination.
 Task Design Patterns Typical design patterns in Embedded systems are compared here.
 Resource Allocation Patterns Resource allocation is a very important part of Embedded system design.
Here we discuss important Resource allocation patterns.
 Timer Management Design Patterns Various Timer Management Design Patterns used in Real-time
systems are covered in this article.

Implementation Design Patterns

 C++ Header File Include Patterns Header file management in complex Realtime projects can get very
complicated. Here are some of the rules to simplify that.

https://www.eventhelix.com/RealtimeMantra/PatternCatalog/message_factory_and_interface_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/message_factory_and_interface_pattern.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/publish_subscribe_patterns.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/publish_subscribe_patterns.htm
https://www.eventhelix.com/RealtimeMantra/HierarchicalStateMachine.htm
https://www.eventhelix.com/RealtimeMantra/HierarchicalStateMachine.htm
https://www.eventhelix.com/RealtimeMantra/StateMachineInheritance.htm
https://www.eventhelix.com/RealtimeMantra/StateMachineInheritance.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/CollectorStatePattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/CollectorStatePattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/ParallelWaitStatePattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/SerialWaitStatePattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/serial_port_design_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/serial_port_design_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/high_speed_serial_port.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/high_speed_serial_port.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/hardware_device_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/synchronizer_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/synchronizer_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/synchronizer_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/transmit_protocol_handler_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/transmit_protocol_handler_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/receive_protocol_handler_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/protocol_packet_design_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/protocol_packet_design_pattern.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/protocol_layer.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/protocol_layer.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/protocol_stack.htm
https://www.eventhelix.com/RealtimeMantra/PatternCatalog/protocol_stack.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/processor_architecture_patterns.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/processor_architecture_patterns.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/processor_architecture_patterns_2.htm
https://www.eventhelix.com/RealtimeMantra/FeatureCoordinationPatterns.htm
https://www.eventhelix.com/RealtimeMantra/TaskDesignPatterns.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/ResourceAllocationPatterns.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/ResourceAllocationPatterns.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/TimerManagementDesignPatterns.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/TimerManagementDesignPatterns.htm
https://www.eventhelix.com/RealtimeMantra/HeaderFileIncludePatterns.htm
https://www.eventhelix.com/RealtimeMantra/HeaderFileIncludePatterns.htm

 STL Design Patterns Here we put Standard Template Library (STL) to work with examples of
typical design patterns using the STL map.
 STL Design Patterns II Queue Management and Resource Management design patterns are implemented
using STL primitives.

Ques12. Explain Data flow graphs and control flow graphs

Ans. Control Flow Graph :

 A CFG is a graphical representation of a program unit.

 Three symbols are used to construct a control flow graph which includes a rectangle used to
represent a sequential computation, a decision box labelled with T and F to represent True and
False evaluations respectively and a merge point.

 A control flow graph is process oriented.

 It doesn’t manage or pass data between components.

 A control flow diagram illustrates how different programs, applications, services, or endpoints act
on and process information to achieve certain ends within the context of a system.

Data Flow Graph :

 A data flow graph is a graphical representation of the "flow" of data through an information
system.

 A DFD shows what kind of information will be input to and output from the system, where the
data will come from and go to, and where the data will be stored. It does not show information
about the timing of processes, or information about whether processes will operate in sequence
or in parallel.

 A data flow graph is information oriented

 It passes data between other components.

 A data flow diagram illustrates how data flows from logical point to point in a system. Consider
the following example which illustrates the difference between control flow graph and data flow
graph

https://www.eventhelix.com/RealtimeMantra/Patterns/stl_design_patterns.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/stl_design_patterns.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/stl_design_patterns_2.htm
https://www.eventhelix.com/RealtimeMantra/Patterns/stl_design_patterns_2.htm

