§ 1.3. Rank. Definition : A non-negative integer r is said to be the rank of a matrix

§ 1.8. Harmonic Analysis:

Some times in practice, the function is not given by a formula but by a graph or by a set of corresponding values. In such cases the Fourier coefficients a_{0}, a_{n} and b_{n} ctc. can not be evalutated

Thus the process of finding the Fourier series when the function $f(x)$ is not given by an analytic axpression but only its numercial values are known at equally spaced points is known as Harmonic Analysis.
§ 1.4. Dirichlet's Conditions:
A function $f(x)$ is expanded in the form of Fourier Series with the fo assumptions :
(i) $f(x)$ is defined in $(-\pi, \pi)$ and is a single valued function .
(ii) $f(x)$ is a periodic function whose period is 2π.
(iii) The terms of the series can be integrated term by term i.e. the series is uniformly con in the interval $(-\pi, \pi)$ and the series

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

(a) converge to $f(x)$ when x is a point of continuity,
(b) converge to $\frac{f(x+0)+f(x-0)}{2}$, when x is a point of ordinary discontinuil
(c) converge to $\frac{f(-\pi+0)+f(\pi-0)}{2}$, when $x= \pm \pi$.
(iv)

$$
\begin{aligned}
& f(x)=a_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \frac{2 n \pi}{b-a} x+b_{n} \sin \frac{2 n \pi}{b-a} x\right\} \\
& \text { where } a_{o}=\frac{1}{b-a} \int_{0}^{f} f(x) d x \\
& a_{n}=\frac{2}{b-a} \int_{a}^{b} f(x) \cos \frac{2 n \pi}{b-a} x d x \\
& \& b_{n}=\frac{2}{b-a} \int_{a}^{b} f(x) \sin \frac{2 n \pi}{b-a} x d x
\end{aligned}
$$ Ex. 1. Obtain the cons an given in the following table:

\boldsymbol{x}
\boldsymbol{y}

0	1
9	18

2	3
24	28

26
5
[RTUB.Tech.(ME) 07; Raj. BE (CE),05; (BT) 04; (EE)03] Sol. Let the Fourier series representing y in $(0,5)$ be

$$
\begin{equation*}
y=a_{0}+a_{1} \cos \frac{\pi x}{3}+a_{2} \cos \frac{2 \pi x}{3}+\ldots+b_{1} \sin \frac{\pi x}{3}+b_{2} \sin \frac{2 \pi x}{3}+\ldots \tag{1}
\end{equation*}
$$

where $\quad a_{0}=\left[\right.$ mean value of y in $(0,5) ; \quad a_{1}=2\left[\right.$ mean value of $y \cos \frac{\pi x}{3}$ in $\left.(0,5)\right]$
$b_{1}=2\left[\right.$ mean value of $y \sin \frac{\pi x}{3}$ in $\left.(0,5)\right]$
The desired values are tabulated as follows:

x	$\frac{\pi x}{3}$	$\sin \frac{\pi x}{3}$	$\cos \frac{\pi x}{3}$	y	$y \sin \frac{\pi x}{3}$	$y \cos \frac{\pi x}{3}$
0	0	0	1	9	0	9
1	$\pi / 3$	$\sqrt{3} / 2$	$\frac{1}{2}$	18	$9 \sqrt{3}$	9
2	$2 \pi / 3$	$\sqrt{3} / 2$	$-\frac{1}{2}$	24	$2 \sqrt{3}$	-12
3	π	0	-1	28	0	-28
4	$4 \pi / 3$	$-\sqrt{3} / 2$	$-\frac{1}{2}$	26	$-13 \sqrt{3}$	-13
5	$5 \pi / 3$	$-\sqrt{3} / 2$	$\frac{1}{2}$	20	$-10 \sqrt{3}$	10
$=\frac{125}{6}=20.83 ;$	$a_{1}=-\frac{25}{3}=-8.33 ;$	$b_{1}=-\frac{2 \sqrt{3}}{3}=-1.15$				

Substituting these values in (1) we get the required Fourier series as follows:

$$
y=f(x)=20.83-8.33 \cos \frac{\pi x}{3}-1.15 \sin \frac{\pi x}{3}+\ldots
$$

3.

Ex. 1. Find the Fourier series of the function $f(x)=x+x^{2}$
in the interval $(-\pi, \pi)$ and show that

$$
\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots
$$

Also find the sum of the series when $x= \pm \pi$.
[RTU B. Tech. III (EE), 07; Raj. BE (EIC, IBME), 06; (BT) 04; (ECE),
Sol. Let $f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$
Here

$$
f(x)=x+x^{2}, \quad-\pi<x<\pi
$$

Now $\quad a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(x+x^{2}\right) d x$
and

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x+x^{2}\right) \cos n x d x
$$

$$
=\frac{1}{\pi} \int_{-\pi}^{\pi} x \cos n x d x+\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos n x d x \quad\left[\text { by } P_{s}\right]
$$

$$
=\frac{2}{\pi}\left[x^{2}\left(\frac{\sin n x}{n}\right)-2 x\left(-\frac{\cos n x}{n^{2}}\right)+2\left(-\frac{\sin n x}{n^{3}}\right)\right]_{0}^{\pi}
$$

$$
=\frac{2}{\pi}\left[2 \pi\left(\frac{\cos n \pi}{n^{2}}\right)\right]
$$

$$
[\because \sin n \pi=0]
$$

or,

$$
\begin{equation*}
a_{n}=\frac{4}{n^{2}}(-1)^{n} \quad\left[\because \cos n \pi=(-1)^{n}\right] \tag{3}
\end{equation*}
$$

and

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x+x^{2}\right) \sin n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin n x d x+\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x \\
& =\frac{2}{\pi}\left[x\left(-\frac{\cos n x}{n}\right)-1 \cdot\left(-\frac{\sin n x}{n^{2}}\right)\right]_{0}^{\pi}=\frac{2}{\pi}\left[\pi\left(-\frac{\cos n \pi}{n}\right)+0\right]
\end{aligned} \quad \text { [by } P_{s} \text {] } \quad \text {] }
$$

or

$$
\begin{equation*}
b_{n}=-\frac{2}{n}(-1)^{n} \tag{4}
\end{equation*}
$$

Now substituting the values of a_{0}, a_{n} and b_{n} from (2),(3) and (4) in (1) respectively, we obtain the required Fourier series as under ,

$$
x+x^{2}=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty}\left[(-1)^{n} \frac{4}{n^{2}} \cos n x+(-1)^{n}\left(-\frac{2}{n}\right) \sin n x\right]
$$

or, $\quad x+x^{2}=\frac{\pi^{2}}{3}-4\left(\cos x-\frac{1}{2^{2}} \cos 2 x+\frac{1}{3^{2}} \cos 3 x-\ldots\right)$

$$
\begin{equation*}
+2\left(\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\ldots\right) . \tag{5}
\end{equation*}
$$

Replacing $x=\pi$ and $x=-\pi$ in (5),

$$
\begin{array}{r}
\pi+\pi^{2}=\frac{\pi^{2}}{3}+4\left(1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots\right) \\
-\pi+\pi^{2}=\frac{\pi^{2}}{3}+4\left(1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots\right) \tag{7}
\end{array}
$$

and
Adding (6) and (7),

$$
2 \pi^{2}=\frac{2 \pi^{2}}{3}+8\left(1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots\right) \quad \text { or, } \quad \frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots
$$

Sum of the series at $x= \pm \pi$

$$
\begin{aligned}
& \quad=\frac{1}{2}[f(-\pi+0)+f(\pi-0)]=\frac{1}{2} \lim _{h \rightarrow 0}[f(-\pi+h)+f(\pi-h)] \\
& =\frac{1}{2} \lim _{h \rightarrow 0}\left[(-\pi+h)+(-\pi+h)^{2}+(\pi-h)+(\pi-h)^{2}\right] \\
& =\frac{1}{2}\left[-\pi+\pi^{2}+\pi+\pi^{2}\right]=\pi^{2}
\end{aligned}
$$

4. Example 42. Determine the values of a and b for which the system

$$
x+2 y+3 z=6, x+3 y+5 z=9,2 x+5 y+a z=b
$$

has (i) no solution (ii) unique solution (iii) infinite number of solutions. Find the so
in case (ii) and (iii).
$r_{\text {soluther }}$

$$
\begin{aligned}
C & =[\mathrm{A}: \mathrm{B}] \\
& =\left[\begin{array}{lll:l}
1 & 2 & 3 & 6 \\
1 & 3 & 5 & 9 \\
2 & 5 & a & b
\end{array}\right]
\end{aligned}
$$

Applying $\mathbf{R}_{\mathbf{2}} \rightarrow \mathbf{R}_{2}-\mathbf{R}_{1}, \mathbf{R}_{3} \rightarrow \mathbf{R}_{3}-2 \mathbf{R}_{1}$, we have

$$
C=\left[\begin{array}{ccccc}
1 & 2 & 3 & : & 6 \\
0 & 1 & 2 & : & 3 \\
0 & 1 & \mathrm{a}-6 & : & 12
\end{array}\right]
$$

Applying $\mathbf{R}_{3} \rightarrow \mathbf{R}_{3}-\mathbf{R}_{\mathbf{2}}$, we have

$$
C=\left[\begin{array}{ccccc}
1 & 2 & 3 & : & 6 \tag{1}\\
0 & 1 & 2 & : & 3 \\
0 & 0 & a-8 & : & b-15
\end{array}\right]
$$

Case (i) No solution : It is possible when $\rho(A) \neq \rho(C)$.
When $a-8=0 \Rightarrow a=8$ then $\rho(A)=2$
When $b-15 \neq 0 \Rightarrow b \neq 15$ then $\rho(C)=3$
Thus for $a=8$ and $b \neq 15, \rho(A) \neq \rho(C)$ and hence the system has no solution i.e., i is inconsistent.
Case (ii) Unique Solution: It is possible when $\rho(A)=\rho(C)=3$ (number of un knowns).
For this, $a-8 \neq 0 \Rightarrow a \neq 8$ and b can have any value so that $\rho(A)=3=\rho(C)$. Further from (1), we have

$$
\begin{aligned}
x+2 y+3 z & =6 \\
y+2 z & =3 \\
(a-8) z & =b-15
\end{aligned}
$$

$a, z=\frac{b-15}{a-8}, y=\frac{3 a-2 b+6}{a-8}, x=\frac{b-15}{a-8}$.
$N_{\text {ase }}$ (iii) Infinite Solutions: It is the case when $\rho(A)=\rho(C)<3$. $\mathrm{N}_{0 \mathrm{~W}}$ when $\mathrm{a}=8$ and $\mathrm{b}=15$ then $\rho(\mathrm{A})=\rho(\mathrm{C})=2(<3)$ S_{0} for $a=8$ and $b=15$ the system has infinite solutions.

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right] \text {. Hence find } A^{-1}
$$

[MREC 2002, MNIT-2005, 2006]
Solution: Statement: Every square matrix A satisfies its own characteristic equation. The characteristic equation for the given matrix is

$$
\begin{align*}
&|\mathbf{A}-\lambda \mathbf{I}|=0 \Rightarrow\left|\begin{array}{ccc}
-\lambda & 1 & 2 \\
1 & 2-\lambda & 3 \\
3 & 1 & 1-\lambda
\end{array}\right|=0 \\
& \Rightarrow-\lambda[(2-\lambda)(1-\lambda)-3]-1[1-\lambda-9]+2[1-3(2-\lambda)]=0 \\
& \Rightarrow-\lambda\left(\lambda^{2}-3 \lambda-1\right)+(\lambda+8)+2(3 \lambda-5)=0 \\
& \Rightarrow-\lambda^{3}+3 \lambda^{2}+8 \lambda-2=0 \\
& \Rightarrow \lambda^{3}-3 \lambda^{2}-8 \lambda+2=0 \tag{1}
\end{align*}
$$

which is the characteristic equation of A.

$$
\text { Now } A^{2}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
7 & 4 & 5 \\
11 & 8 & 11 \\
4 & 6 & 10
\end{array}\right]
$$

$$
A^{3}=A^{2} \cdot A=\left[\begin{array}{ccc}
7 & 4 & 5 \\
11 & 8 & 11 \\
4 & 6 & 10
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
19 & 20 & 31 \\
41 & 38 & 57 \\
36 & 26 & 36
\end{array}\right]
$$

Now $A^{3}-3 A^{2}-8 A+2 I_{3}$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
19 & 20 & 31 \\
41 & 38 & 57 \\
36 & 26 & 36
\end{array}\right]-\left[\begin{array}{lll}
21 & 12 & 15 \\
33 & 24 & 33 \\
12 & 18 & 30
\end{array}\right]-\left[\begin{array}{ccc}
0 & 8 & 16 \\
8 & 16 & 24 \\
24 & 8 & 8
\end{array}\right]+\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=0
\end{aligned}
$$

Hence A satisfies its characteristic equation.
\therefore The theorem is verified.
Since, $A^{3}-3 A^{2}-8 A+21_{3}=0$
$\Rightarrow A^{2}-3 A-8 \mathbf{I}_{3}+2 A^{-1}=0$
$\Rightarrow A^{-1}=\frac{-1}{2}\left[A^{2}-3 A-8 \mathbf{I}_{3}\right]$

$$
\begin{aligned}
& =\frac{-1}{2}\left(\left[\begin{array}{ccc}
7 & 4 & 5 \\
11 & 8 & 11 \\
4 & 6 & 10
\end{array}\right]-\left[\begin{array}{lll}
0 & 3 & 6 \\
3 & 6 & 9 \\
9 & 3 & 3
\end{array}\right]-\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right]\right) \\
& =\frac{-1}{2}\left[\begin{array}{ccc}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & 3 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}
1 & -1 & 1 \\
-8 & 6 & -2 \\
5 & -3 & 1
\end{array}\right]
\end{aligned}
$$

