GOVERNMENT WOMEN ENGINEERING COLLEGE AJMER B.TECH V SEM MID TERM EXAMINATION

TIME: 60 MIN.

20

MAX. MARKS:

DIGITAL SIGNAL PROCESSING

- Check whether the following systems are (i) Time Invariant/Time Variant (6)
 - (a) Y(n) = x(n) x(n-1)
 - (b) Y(n)=n x(n)
 - (c) Y(n)=x(-n)
 - (d) $Y(n) = x(n) \cos w(n)$
- Check whether the following systems are (i) Linear/Non Linear
 (6)

- (a) Y(n)=n x(n)
- (b) $Y(n) = x(n^2)$
- (c) $Y(n) = x^{2}(n)$
- (d) Y(n) = A x(n) + B
- 3. The impulse response of an LTI system is given as

h (n)= { 1,2,1,-1}. Determine the response of the system to the input signal

 $x(n) = \{1, 2, 3, 1\}.$

OR

- 4. Determine the range of values of A & B for which the following LTI system with impulse response is stable: H(n)={ (4)
- Determine the Fourier Transform & Energy density spectrum(S_{xx})of the signal (4) x(n)= aⁿ u(n) |a| <1

OR

Derive the Multiplication and Convolution properties of DTFT.
 (4)

GOVERNMENT WOMEN ENGINEERING COLLEGE AJMER B.TECH VII SEM MID TERM EXAMINATION

TIME: 60 MIN.DIGITAL SIGNAL PROCESSINGMAX.MARKS: 20

1. Convert the following analog filter into a digital filter using impulse invariance method.

OR

- 2. Design an analog Butterworth filter that has a cut off frequency of 20 rad/sec and 20dB attenuation at 40 rad/sec.
- 3. Convert the analog filter with transfer function into a

digital filter using Bilinear Transformation method. The digital filter is required to have a resonant frequency of $\omega_r = \pi/2$

OR

- 4. Design a single pole digital Low pass filter with a 3dB Bandwidth of 0.2π using Bilinear Transformation method on the analog filter with system function H(s)=
- 5. Determine the order of a Butterworth filter that satisfy the following constraints:

With T=01 sec.Apply impulse invariance method.

OR

6. Draw the cascade and parallel form network structure for the system Y(n)=3/4 y(n-1)-1/8 y(n-2) + x(n) + 1/3 x(n-1)